Enhanced Recovery in a Mature Field Utilizing MazeFlo™, an Innovative Sand Control Technology

Akinpelu J¹, Okoroh K¹, Agbaji J¹, Ogunnusi H¹ and Hommema J²

Mobil Producing Nigeria Unlimited¹

ExxonMobil Upstream Research Company²
Presentation Outline

• Introduction
• Geology background
• The Challenge: Increased Sand Production
• What is MazeFlo™?
• MazeFlo™ Candidate Selection
• Workover Candidate Well
• Post Workover Result
• Conclusion
Ubit Field is located in OML 67 part of NNPC and Mobil Producing Nigeria (MPN) Joint-Venture (JV) acreage
100-ft water depth; 36km from the Qua Iboe Terminal (QIT)
Largest producing asset in MPN with over 46 years of production (original oil in place ~2GBO)
Technical challenge: Optimizing recovery of remaining oil in a mature asset
Geology Background

Field Overview:
- Discovered in 1968
- First oil in 1970
- Matured field with 46 years of production
- Over 200 wells drilled till date

Reservoir Description/Structure:
- Faulted 4-way dip closure, 15k acres
- Major reservoir is Agate (97% of 2P EUR)
- Agate consists of Bedded Biafra and Disturbed Biafra
- Bedded - shallow-marine interbedded sand and shale
- Disturbed - slumped or churned shallow marine sand and shale
- Disturbed Biafra consists 70% of the Agate reserve
The Challenge: Increased Sand Production

- Agate reservoir consists of unconsolidated sands with potential for sand production
- In recent times, increased sand production in a number of Ubit field wells has become a key challenge
- Sand production is a key challenge in the oil and gas industry
- Sand control technologies developed to address this challenge in cased and open hole completions
- MPN’s open hole completion technique has evolved in the last two decades
 - ✓ Slotted liner >> Excluder screen >> Standalone Screen (SAS)
- Standalone screens despite its improved design are still prone to sand failure due to
 - ✓ Mechanical damage during installation and production
- Limited intervention options available for sand producers
- Self-mitigating screen required to ensure sand-free production throughout well life
 - ✓ MazeFlo™ designed to meet this challenge

ExxonMobil

This document is provided “as is” and without condition, endorsement, guarantee, representation or warranty, or liability of any kind by EM and its affiliated companies, all of which are expressly disclaimed to the maximum extent permitted by applicable law. EM assumes no responsibility for any typographical, technical, or other inaccuracies, errors or omissions in this document.
Challenge: Mitigate sand control screen mechanical damage during installation and production

- Uncertainty in how, when, and where a “hot spot” will occur over the well lifetime

Solution: MazeFlo™ self-mitigating sand control screens use *redundant sand screens* and *compartment baffles* to improve reliability and longevity in sand prone well production

What is MazeFlo?

Challenge: Mitigate sand control screen mechanical damage during installation and production

- Uncertainty in how, when, and where a “hot spot” will occur over the well lifetime

Solution: MazeFlo™ self-mitigating sand control screens use **redundant sand screens** and **compartment baffles** to improve reliability and longevity in sand prone well production

This document is provided “as is” and without condition, endorsement, guarantee, representation or warranty, or liability of any kind by EM and its affiliated companies, all of which are expressly disclaimed to the maximum extent permitted by applicable law. EM assumes no responsibility for any typographical, technical, or other inaccuracies, errors or omissions in this document.
How Does it Work?

MazeFlo™ Screen

Maze Compartment

Standard Wire-Wrapped Screen
How Does it Work?

Self-Mitigating Sand Control Screen

- Sand Control Maintained
- No Workover

Standard Wire-Wrapped Screen

- Sand Production
- Lost HC Production
- Major Workover

continued HC Production from Other Compartments

Mechanical Damage
- Erosion
- Installation
- Compaction

This document is provided “as is” and without condition, endorsement, guarantee, representation or warranty, or liability of any kind by EM and its affiliated companies, all of which are expressly disclaimed to the maximum extent permitted by applicable law. EM assumes no responsibility for any typographical, technical, or other inaccuracies, errors or omissions in this document.
First Commercial MazeFlo™ Application - Candidate Selection

- Initial implementation targeted workover for remedial sand control
- MazeFlo™ Workover Selection criteria
 - Known / potential sand producer
 - Well completed without or failed sand control
 - Existing lower completion ID large enough for 2-3/8” MazeFlo installation
 - Ability to clean out existing completion of any sand fill
 - Good investment economics
- Evaluated 25 wells for MazeFlo™ remedial sand control application
- Well ‘X’ had the highest chance of success and meets the selection criteria
Workover Candidate Well – Ubit ‘X’ Well

• Horizontal oil producer with 1500 ft lateral section

• Unconsolidated sand along production section

• Completed with 4-1/2” pre-perforated liner

• Sand production started two years post initial completion

• Reduced rate to manage sand production

• Well eventually shut in on increased sand production

• Ideal candidate for MazeFlo™ intervention / workover
Workover Planning & Execution

• Workover objective
 • Install 1500 ft 2-3/8” MazeFlo screens in 4-1/2” pre-perforated liner

• Key front-end engineering performed
 • Well performance analysis
 • Sand transport hydraulic modeling
 • Torque and Drag analysis

• Conducted Workover On Paper (WOP) prior to workover execution

• Conducted Just In Time Training (JITT) prior to execution of each phase

• Executed successfully without LTI and 7.2% NPT

• Successfully installed 1500 ft of MazeFlo screens in liner
Post Workover Results

- Four years post MazeFlo™ installation repeated sand monitoring confirmed sand free production
- Drawdown of 60 psi comparable to conventional standalone screen completion
- Streamed at over twice the pre-workover rate
 - Sand free rates significantly improved from 1.7kbd to 3.5kbd (avg) plateau rate.

Sand Check Results at an Average of 3 Months Frequency

<table>
<thead>
<tr>
<th>Test Number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHP (psi)</td>
<td>410</td>
<td>520</td>
<td>440</td>
<td>510</td>
<td>420</td>
<td>480</td>
<td>460</td>
<td>420</td>
<td>500</td>
<td>480</td>
<td>570</td>
<td>500</td>
</tr>
<tr>
<td>Sand (ppt(vol))</td>
<td>0</td>
</tr>
</tbody>
</table>
Conclusion

- First global commercial application of MazeFlo™ technology successfully applied in Ubit field.

- Post MazeFlo™ Installation, the well has been producing at unconstrained sand-free rate for four years with increased EUR.

- Self-mitigating design makes MazeFlo™ more reliable for new installation and remedial sand control applications.

- This multidisciplinary collaboration has provided workover opportunity to fully deplete a mature field by tackling increased sand production.

- MazeFlo™ screen application is cost-effective and minimizes production downtime.
Acknowledgement

- Nigerian National Petroleum Corporation for approving the release of the material presented in this talk

- Mobil Producing Nigeria Unlimited for permission to present this work