The New Paradigms in Oil and Gas Exploration and Production and Implications for The Niger Delta

NAPE Technical Lecture Series
January 2008

By

Kehinde o. LADIPO (FNAPE; FAS)

Senior Advisor
Lekoil
Churchgate Towers, Lagos
The New Paradigms in Oil and Gas Exploration and Production: Implications for Increased Potentials of The Niger Delta

- Introduction
- Current Realities and Challenges
- Future Trends
- Concluding Remarks
Introduction: Strategic Imperatives

Exploration and Exploitation strategies of oil and gas are changing, driven by need for

- Reduction in life cycle evaluation from discovery to first oil/gas
- Cost Reduction
- Lower oil price
- Increasing technological challenges to identify new and bypassed oil and gas
Introduction: Current Realities

- **Exponential increase in Data volume:**
 - higher fidelity of seismic data
 - sophistication of log acquisition from drilling
 - legacy data, interpretation and models

- **Discipline Experts and Teams with ability to analyze data (workflow implementation) and generate models**
 - work in silos, and
 - integration in often limited

- **Increasing need for**
 - greater sophistication of subsurface models
 - consistency of model hierarchies and management of uncertainties
 - integrations of knowledge and skills sets,
 - multi-dimensional analyses and
 - interrogation of large, diversified data types

.... hence the need to evolve new strategies
Introduction: The New Approach in E&P

Designing a New strategy for E&P Teams must be underpinned by:

1. Knowledge Management
 - “New and robust subsurface concepts and models”

2. Technology Applications and Integrated interpretation
 - “New Platforms and integration of workflows”
 - “Reduction of Interpretation Cycle Time”

3. Data Management
 - “Managing Big Data”
 - “Ability to Sweat information from existing and New Data”

4. Workflow and Discipline Team knowledge integration
 - “from Asset Based teams to Internal and Collaborative”

5. People
 - Attitudes
 - Expertise Skills of the future
Current Realities: Niger Delta Resource Base

- Over 65Bln Barrels produced and current reserves estimates of ca 35Bln
- Mainly from Conventional play onshore and shallow water
- YTF estimates of ca. 70-75Bboe from onshore deep play and upper slope systems (future reserves addition)
- Ability to realize potential of the undiscovered resources is key and requires new thinking

..... Concepts, technology, Integration and...
Decoding the “DNA” of the Niger Delta

- Tectonics and Structural Framework
 - Subsidence rates and Delta Evolution
 - Trapping Configurations

- Sedimentation and Sand(%) Distribution
 - Sediment supply
 - Depositional Processes
 - Delta Evolution
 - Depositional Setting and Controls
 - Implications on HC distribution (e.g. sd%)

- Gross Depositional Environment
 - Accommodation Space
 - Sediment Supply
 - Structure & Sedimentation
 - Basin fill histories
 - Onshore-Offshore linkage
 - Depositional models and Stratigraphic Architecture

- Hydrocarbon Occurrence
 - Source rock maturity and Fluid Type
 - HC expulsion and timing
 - Overpressure
• New tectonic model of gravity sliding has resulted in new play opportunities in the deep, otherwise interpreted as shale diapiric structures.
Niger Delta DNA – Tectonics Evolution and Sedimentation

Schematic Framework of megastructures and Trapping Styles

- Trapping styles in the conventional delta mainly structural and constitute ca. 90% of the discovered potential.
- Onshore-offshore linkage opens new depositional models and geometries of the deeper potential.
- The New Deep play is combination traps (lowstand wedge) and stratigraphic traps (upper-mid-slope aprons, canyons and fans).
- Potential to add significant reserves.
Gross Depositional Setting – Lowstand Wedge

- Lowstand Shelf Margin wedge as defined from regional framework studies
- New play models of the deep untested sequences
- Below current conventional delta

Courtesy SPDC
GDE Characterization of Shelf Margin Deltas

- GDE Models occur at 3rd and 4th order scales
- 3rd and 4th order cycles interpreted from seismic stratigraphy and well log stacking patterns
- Stratigraphic geometry and isopach demonstrate thickening of wedge against bounding fault – increased fault activity during lowstand
- Important for sand% estimation

Stratigraphic Architecture of a lowstand wedge calibrated with well logs

TST: landward dipping onlaps
thins seaward, clinoforms

TST

HST
LST

Base Wedge 2
Top Wedge 1
Top Wedge 2
Top Wedge 1
Base Wedge 2 (20.4 SB?)

Well-5 (partial penetration of Wedge)

1 km

19.4 MFS

E2000
E3000
E3500
E4000
E5000
E6000

F1000

GBARAN-005 [SSTVD]

GR_NORM

RES_DEEP

SSTVD

Courtesy SPDC
Gross Depositional Environments Along A Composite Regional Line and 3D Fault Framework and, Eastern Delta

KEY TO DEPOSITIONAL MODELS:

- **SMD** - Shel margin Delta
- **DBD** – Deep Buried Delta
- **CRPO** – Counter Regional Pinch-Out
- **RSMA** - Retrograde Slope Margin Apron
- **S_Ap** - Slope Apron
GDE Characterization of Retrograde Slope Margin

Seismic Facies and geometry - Retrograde Slope Margin (RSM)

- **Stratigraphic Trap**, downdip of erosional features on shelf edge and shelf deltas
- Fore setting of packages suggests isolated lobes with limited lateral continuity
- Overlain by continuous high amplitude reflectors, i.e., shale drapes
- Associated with Rotational Slump cars (RSM), typical of upper slope margin
Advances in Seismic Technologies For The Deep Play

Processing Technologies
- Time migration
- Depth migration
- Merged regional seismic lines

Fault Imaging
- Fault imaging (Flatter*)
- Fault Shadow effects

(Flater is a Shell Proprietary processing software)

Velocity Modeling
- Overpressure
- True amplitude processing and Phase decomposition (and non-amplitude supported plays)

Attribute Analyses, Rock Physics and Inversion
Merged Arbitrary Regional Seismic Profile Across Eastern Niger Delta
Geophysical Modeling of Stratigraphic Data

Stratigraphic Forward Modeling (Basin Scale)

Reservoir Modeling (Field Scale)
AVO Inversion Attributes & Rock Physics Characterization of Seismic Facies

Reservoir Scale

Calibration (1D):
- S-impedance
- Mu-rho
- Lambda-rho

Propagation
- Supervised vs. Unsupervised (AI)

Reservoir Properties

Lithology Differentiation

Seismic Inversion & Reservoir Property Trends

2D Depositional Facies From Seismic Inversion and Attribute Analyses (Artificial Intelligence)

Volume Attributes: Unsupervised Classification

(Source: Bernard Ebere et al., 2016, 2017)
RokDoc Stochastic inversion Ji-Fi technology (Joint impedance and Facies inversion technology (Ji-Fi))
Allows uncertainty analyses in reservoir properties to be taken into account, producing multiple possible geological realizations. (Source: ikonscience.com)
Rock Physics and Inversion: Machine Learning-Based (AI) Rock-Type Classification.

Advanced Seismic Inversion
Controlled propagation of log facies calibrated seismic response to predict

- Seismic data and facies from logs to predict facies volumes and their probability of occurrence to improve reservoir characterization

(Source: Paradigm. In: Secrets To Doing Business Successfully In Oil, Gas September 13, 2017)
The New Paradigm: Big Data is now ‘A Reality’

Data Management
- More effective storage and access of data and management strategies

Advanced Subsurface Interpretation Tools
- Robust Interpretation and Integration platforms (data, concepts, workflow streams, legacy knowledge)

Collaborative Platform(s)
- Integration of different data types and workflows
- Simultaneous and interactive interrogation of data types and
- Scalable and consistent models

People & Knowledge
- Provide QA of subsurface models
- Adaptation to the New World and acquisition of New Skills
The Transformation in G&G

The Future is more of AI:
- Integrate workflows
- Eliminate errors in interpretation
- Generate more multiple realizations of the subsurface
- Improve uncertainty management and estimation of probabilities to rank model outputs
- Drive Collaboration of experts and teams
- Improve data and knowledge management
- Save costs
Concluding Thoughts

• The evolution of new concepts is key to ensure reserves growth, even in ‘brown’ field basins

• The challenges of ‘big data’, ‘workflow and discipline integration’ required to evolve new concepts, as well as ‘scalable and consistent models’ of the subsurface need new approaches

• Technological Advances of today driven increasingly by AI and fusion of knowledge and skills sets, teams and workflows will be the future, to reduce life cycle evaluation time and realize value quickly

• The Geoscientist of the near future therefore require multi-dimensional skills sets to evaluate multi-component data sets simultaneously, including higher levels of IT capabilities

• A new approach of skills training and development is a must for the E&P professional
Acknowledgements

• SPDC
• Lekoil
• StratKol Consult Ltd. and Colleagues and Sources